
VFORK 1
ID: 869-BSI | Version: 4 | Date: 5/16/08 2:39:39 PM

VFORK
Vulnerable to race conditions. Don't use vfork() in your programs.

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-04-23

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 5185 bytes

Attack Category • Denial of Service

Vulnerability Category • Race Condition

• Process management

• Unconditional

Software Context • Process Management

Location • unistd.h

Description From http://www.linuxsecurity.com/HOWTO/
Secure-Programs-HOWTO/avoid-vfork.html:

The portable way to create new processes in
Unix-like systems is to use the fork(2) call.
BSD introduced a variant called vfork(2) as an
optimization technique. In vfork(2), unlike fork(2),
the child borrows the parent's memory and thread of
control until a call to execve(2V) or an exit occurs;
the parent process is suspended while the child is
using its resources. The rationale is that in old BSD
systems, fork(2) would actually cause memory to
be copied while vfork(2) would not. Linux never
had this problem; because Linux used copy-on-
write semantics internally, Linux only copies pages
when they changed (actually, there are still some
tables that have to be copied; in most circumstances
their overhead is not significant). Nevertheless,
since some programs depend on vfork(2), recently
Linux implemented the BSD vfork(2) semantics
(previously vfork(2) had been an alias for fork(2)).

There are a number of problems with vfork(2). From
a portability point of view, the problem with vfork(2)
is that it's actually fairly tricky for a process to not
interfere with its parent, especially in high-level
languages. The "not interfering'' requirement applies
to the actual machine code generated, and many
compilers generate hidden temporaries and other
code structures that cause unintended interference.
The result: programs using vfork(2) can easily fail

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/35-BSI.html
http://www.linuxsecurity.com/HOWTO/Secure-Programs-HOWTO/avoid-vfork.html
http://www.linuxsecurity.com/HOWTO/Secure-Programs-HOWTO/avoid-vfork.html

VFORK 2
ID: 869-BSI | Version: 4 | Date: 5/16/08 2:39:39 PM

when the code changes or even when compiler
versions change.

For secure programs it gets worse on Linux systems,
because Linux (at least versions 2.2 through
2.2.17) is vulnerable to a race condition in vfork()'s
implementation. If a privileged process uses a
vfork(2)/execve(2) pair in Linux to execute user
commands, there's a race condition while the child
process is already running as the user's UID but
hasn't entered execve(2) yet. The user may be able
to send signals, including SIGSTOP, to this process.
Due to the semantics of vfork(2), the privileged
parent process would then be blocked as well. As
a result, an unprivileged process could cause the
privileged process to halt, resulting in a denial of
service of the privileged process' service. FreeBSD
and OpenBSD, at least, have code to specifically
deal with this case, so they may not be vulnerable to
this problem (Solar Designer noted and documented
this problem in Linux on the ``security-audit''
mailing list on October 7, 2000).

Don't use vfork(2) in your programs. It is or will be
deprecated on some systems and is not portable on
those systems that do support it.

APIs Function Name Comments

vfork() check

fork()

Method of Attack Refer to Description.

Exception Criteria

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

Always Use fork()
instead of
vfork()

Effective

Signature Details pid_t vfork(void);

Examples of Incorrect Code

Examples of Corrected Code

Source Reference • VFORK3 (1999).

Recommended Resource

Discriminant Set Operating System • UNIX

Languages • C

• C++

http://www.annodex.net/cgi-bin/man/man2html?2+vfork

VFORK 3
ID: 869-BSI | Version: 4 | Date: 5/16/08 2:39:39 PM

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

mailto:copyright@cigital.com

